

Introduction to Peritoneal Dialysis

Joanne M. Bargman MD FRCPC
Director, Peritoneal Dialysis Program
Division of Nephrology and Department of Medicine
University Health Network
Professor, Faculty of Medicine at the University of Toronto

Bio: Joanne M. Bargman MD FRCPC

Med School: University of Toronto Medical Residency: Toronto and Melbourne, Australia

Nephrology fellowship: Stanford

University

Director of the Home Peritoneal Dialysis

Program at the University Health

Network in Toronto

Disclosures

DaVita Healthcare: Speaker and Consultant

Baxter Canada: Speaker and Consultant

Baxter Global: Speaker

Opterion: Consultant

Objectives

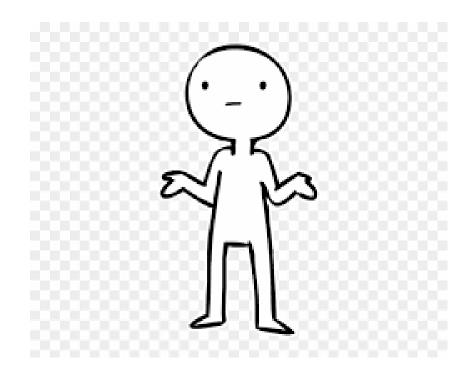
We will use patient cases to illustrate the following:

Peritoneal transport

- solute flux
- ultrafiltration

Peritoneal dialysis solutions

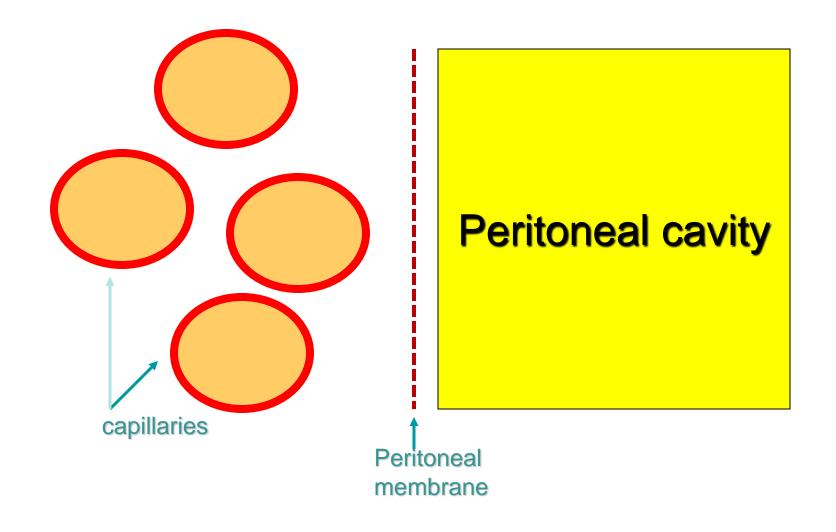
- dextrose-based
- icodextrin


Adequacy of PD

Approach to volume management

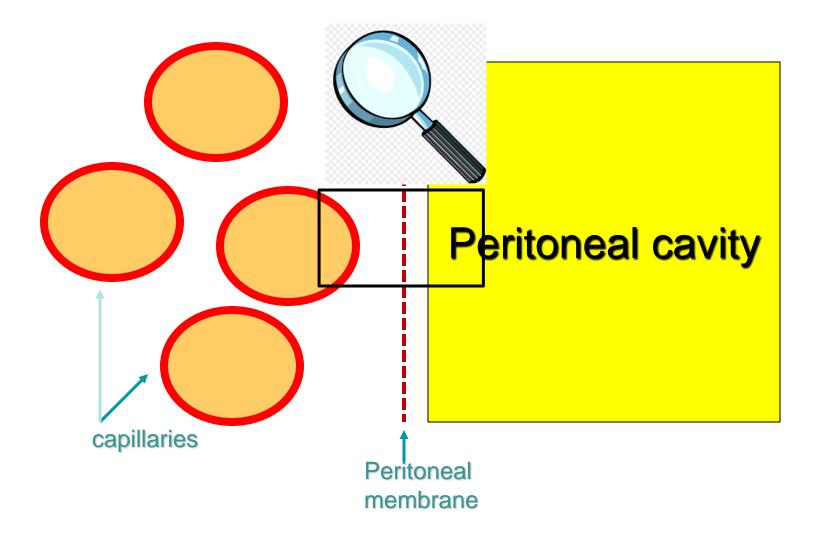
The "Rapid Transporter" – so what?

- •67 year old woman with type II diabetes starts on peritoneal dialysis
- •two months later, peritoneal equilibration test (PET) shows that the D/P creatinine at 4 hours is 0.90 ("high" or "rapid" transporter)

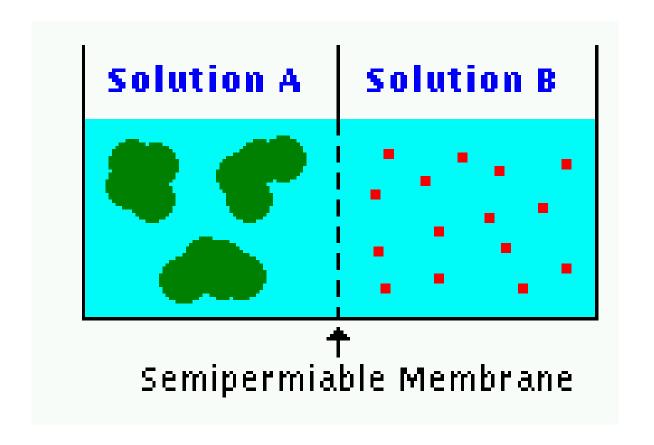


Which ONE of the following statements about D/P creatinine is TRUE?

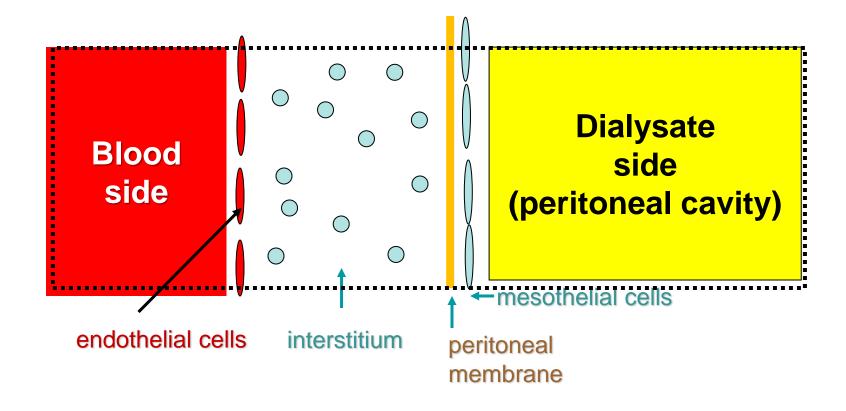
- A. The D/P creatinine is an important predictor of dialysis adequacy.
- B. The PET test was performed too soon after the start of PD.
- C. There may be problems with ultrafiltration, especially during the long dwell of dialysate.
- D. Icodextrin is not useful for this high or rapid transporter



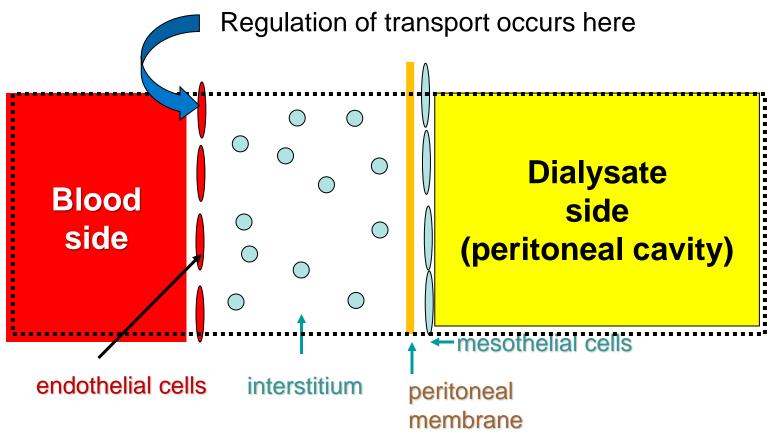
How PD Works: The Peritoneal-Vascular Interface



How PD Works: The Peritoneal-Vascular Interface


Remember Your Grade 12 Chemistry Experiments?

The Peritoneal-Vascular Interface



The Peritoneal-Vascular Interface

Solute Transport in PD: How Does Solute Get from the Blood to the Peritoneal Fluid?

- I. Diffusion
- II. Convection (during ultrafiltration)

Diffusion Kinetics - from blood to dialysate

- diffusive flux is fastest in the first hour and slows over time
- by 4 hours, urea is > 90% equilibrated, creatinine about 60% equilibrated
- further small solute removal is minimal after that
- long dwells are more important for removal of middle and larger MW solutes

Diffusion Curves – a Schema

Dialysate-to-plasma (D/P) ratios

Diffusion Kinetics – A Two-Way Street

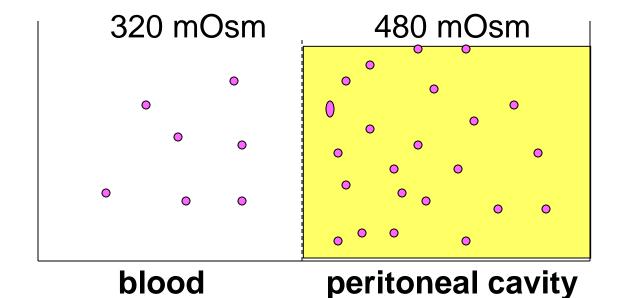
Diffusion goes in both directions. What can you add to dialysate that ends up in the blood?

- antibiotics (not just for peritonitis)
- insulin
- KCl (up to 10 mEq/l)
- xylocaine, NaHCO3 (infusion pain)

Ultrafiltration in PD

- result of osmotic pressure (compared to HD where result of hydraulic pressure)
- results of ultrafiltration:
 - fluid removal
 - convective removal of solutes, especially middle molecules

Composition of Peritoneal Dialysate: Osmolality

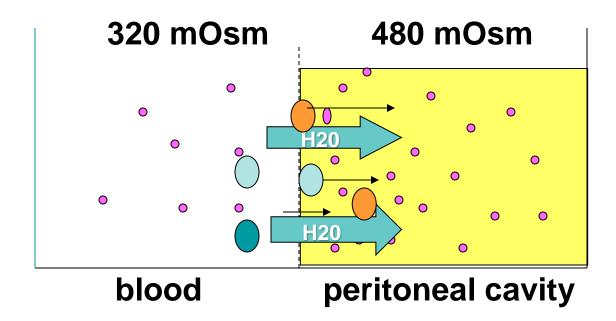

```
1.5% dextrose - 347 mOsm/l (isotonic)
```

- 2.5% dextrose 397 mOsm/l (hypertonic)
- 4.25% dextrose 485 mOsm/l (more hypertonic)

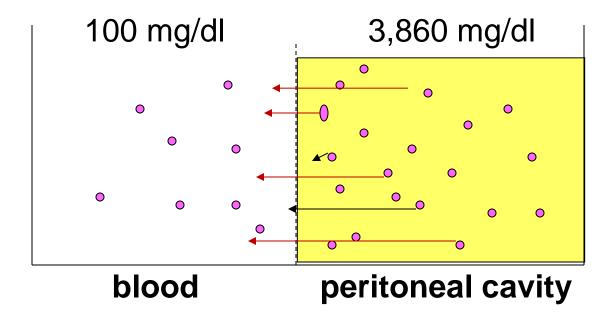
Ultrafiltration in Peritoneal Dialysis

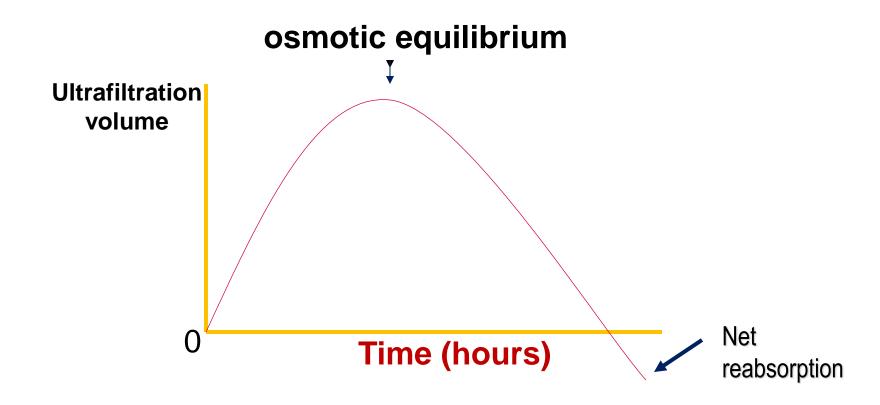
Example: 4.25% dextrose dialysate

Ultrafiltration: 4.25% Dialysate


Water will move from lower to higher osmolality

Ultrafiltration: 4.25% Dialysate


Water will move from lower to higher osmolality <u>and take solute</u> with it


Ultrafiltration in PD: The Bad News

The glucose itself diffuses out of peritoneal cavity along its own concentration gradient

Ultrafiltration in PD is Time-Dependent

Typical Ultrafiltration Values in PD

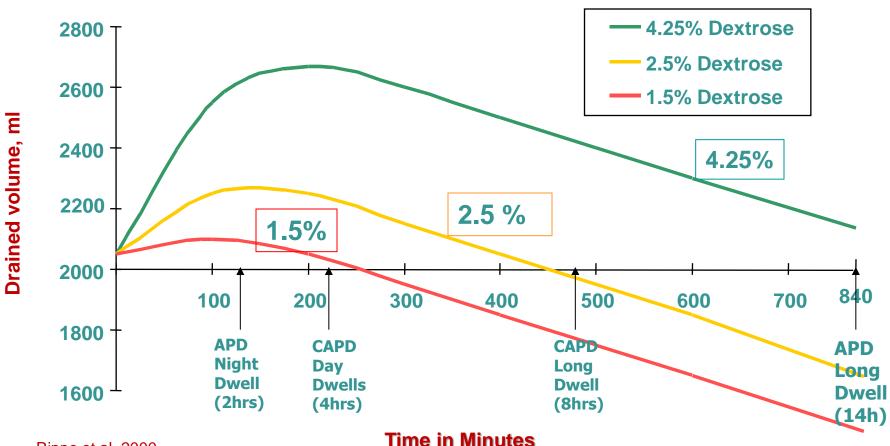
1.5 % Dialysate

- □maximum UF 330 +/- 187 ml
- □time to maximum UF 140 +/- 48 minutes

4.25 % Dialysate

- □maximum UF 1028 +/- 258 ml
- □time to maximum UF 247 +/- 61 minutes

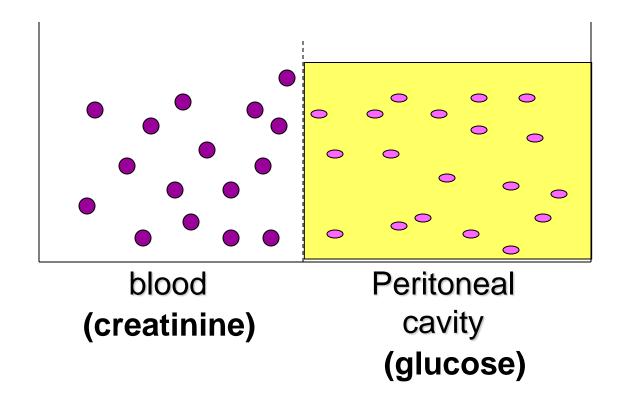
Snap Quiz


A 4.25% solution typically leads to 1L of UF over 4h (=250 ml/hr), so:

Why are PD patients switched to HD for fluid removal if they end up in ICU?

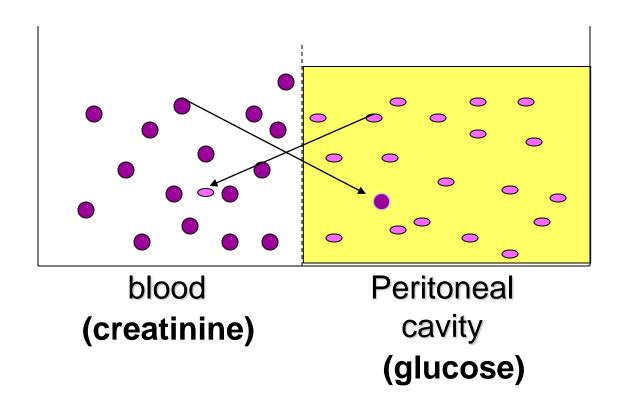
Beats me...

Typical Ultrafiltration Curves for Each Strength of Dialysate


The Amount of UF Depends on 3 Main Factors

- tonicity of dialysate
 - -4.25% > 2.5% > 1.5%
- duration of dialysate dwell
 - after osmotic equilibration, fluid starts to be absorbed
- permeability of peritoneal membrane to glucose
 - osmotic gradient dissipates faster across a more permeable membrane

The Peritoneal Equilibration Test (PET): A Way to Characterize the Peritoneal Membrane


At time t = 0:

The Peritoneal Equilibration Test (PET): A Way to Characterize the Peritoneal Membrane

Solutes diffuse along their concentration gradient:

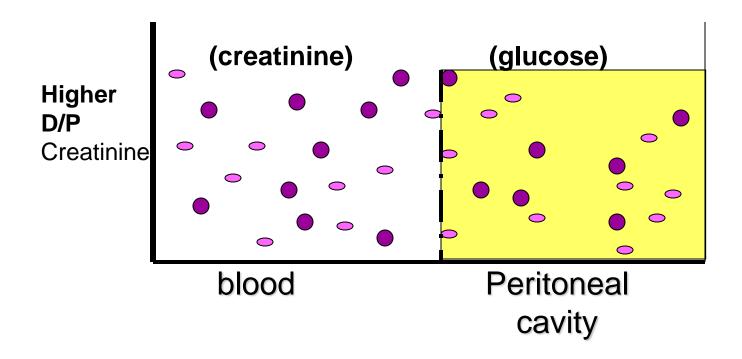
The Peritoneal Equilibration Test

How *easily* does creatinine cross from blood to the peritoneal cavity?

quantified as <u>Dialysate [creatinine]</u>

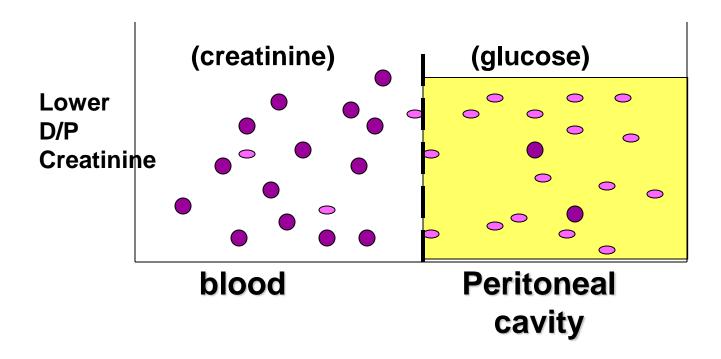
Plasma [creatinine]

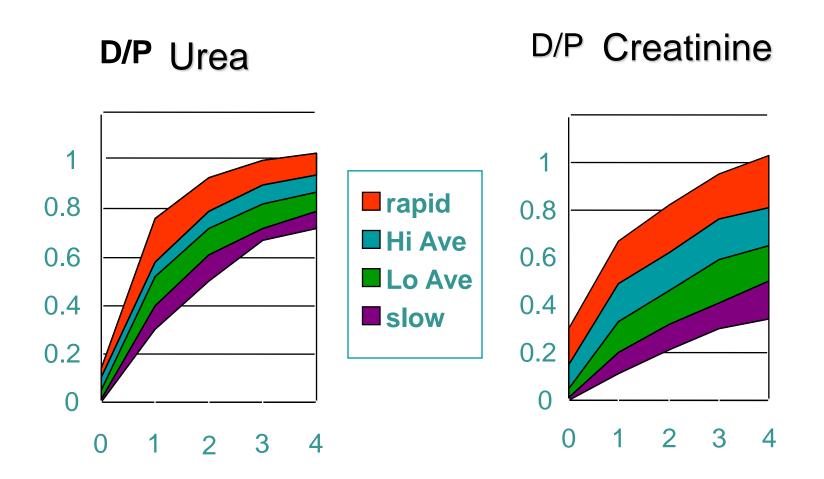
or


D/P creatinine (at T = 4 hours)

• the "leakier" the peritoneal membrane, the higher the D/P creatinine

The Peritoneal Equilibration Test (PET): A Way to Characterize the Peritoneal Membrane


"leaky" peritoneal membrane (rapid transporter)


The Peritoneal Equilibration Test (PET): A Way to Characterize the Peritoneal Membrane

"tight" peritoneal membrane (slow transporter)

Peritoneal Equilibration Test

Membrane Permeability and Ultrafiltration "rapid transporters"

the "leakier" the peritoneal membrane (more vascular beds are open)

the faster the glucose will diffuse out of the peritoneal cavity

the faster the osmotic gradient will dissipate

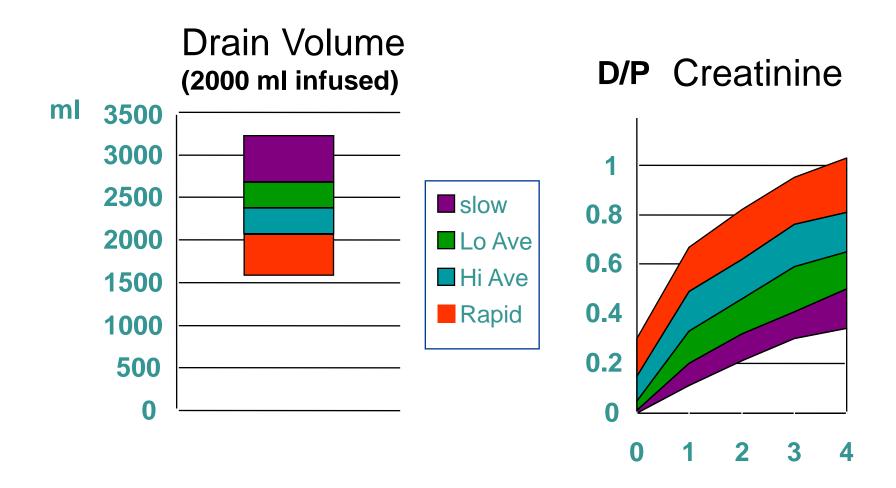
Why Is Someone a Rapid Transporter from the Start?

- association with higher CRP, lower serum albumin, less residual renal function
- in some studies, more common in diabetics
- lower serum albumin is seen even before the start of PD

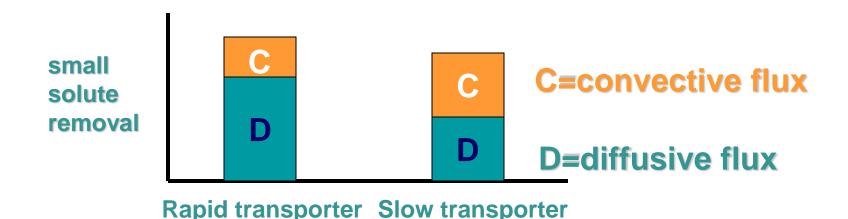
This suggests that rapid transporter status may be a marker of inflammation

Membrane Permeability and Ultrafiltration - *slow transporters*

the "tighter" the peritoneal membrane (fewer open vascular beds)



the osmotic gradient will be maintained longer


MembraneTransport Status – Implications for Ultrafiltration

Rapid vs Slow Transporters: Why Solute Removal Isn't All that Different

The better UF in the slow transporters will increase solute removal through convective transport

Back to Our Patient: Which ONE of the following statements about our "rapid transporter" is TRUE?

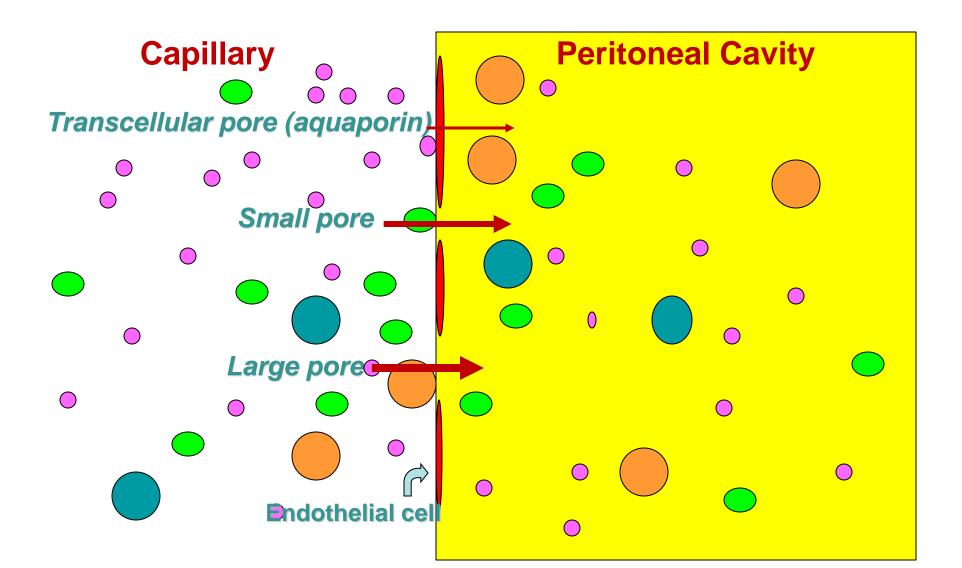
- A. The D/P creatinine is an important predictor of dialysis adequacy.
- B. The PET test was performed too soon after the start of PD.
- C. There may be problems with ultrafiltration, especially during the long dwell of dialysate.
- D. Icodextrin is not useful for this high or rapid transporter

Explanation

- glucose diffuses out of the peritoneal dialysis fluid over time into the systemic circulation
- during a long dwell, the loss of glucose in the dialysis fluid leads to dissipation of the osmotic gradient and ultrafiltration will stop
- this all happens faster in the rapid transporter

Thirsty in the Morning – Why?

- a 42 year old woman with IgA nephropathy is on night cycler PD
- the nephrologist wants to impress the administrator and CMS with a high Kt/V urea and prescribes 5 cycles over 9 hours, 2.5% dialysate
- The patient complains of marked thirst in the morning and has to drink several glasses of water



What is the One Best Answer?

- A. The sleep apnea syndrome seen in dialysis patients leads to mouth breathing and thirst.
- B. The patient may be hypernatremic in the morning because of sodium sieving on PD.
- C. The glucose absorption increases the serum osmolality and drives thirst.
- D. The morning thirst is the result of resetting of the osmostat because of the cycling PD.

Transport in Peritoneal Dialysis The Three Pore Model

Sodium Sieving in Peritoneal Dialysis

Osmotic gradient

H2O 1. Water movement through aquaporins **H20** dialysate

blood

Sodium Sieving in Peritoneal Dialysis

2. Na⁺ andH₂O movement through small pores **H2O H2O** dialysate

blood

Sodium Sieving

- more water than sodium moves into the peritoneal cavity at the beginning of UF
- sodium is held back or "sieved" at the aquaporin
- sodium diffuses into the dialysate more slowly via the intercellular pores
- short dwells will lead to more water than sodium removal.

PD Patients in the US Get a Lot of Exchanges!

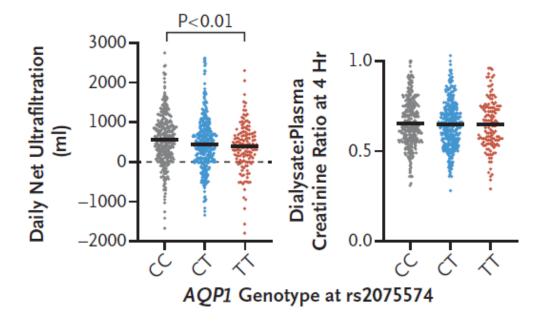
Giles et al Clin J Am Soc Nephrol 2024

Table 2. Summary of day 120 peritoneal dialysis prescriptions (N=11,659)		
Prescription Information	Nocturnal APD Patients (n=10,037, 86%)	Daytime+Nocturnal APD Patients (n=1622, 14%)
	Mean±SD or No (%)	Mean±SD or No. (%)
Weekly frequency of PD treatments		
≤6	232 (3)	14 (1)
7	9774 (97)	1608 (99)
Estimated dry weight, kg	83.9±21.5	90.2±23.4
Total number of cycles"	(4.9 ± 1.3)	6.4 ± 1.6
Total treatment volume, L	9.3±2.5	11.4±3.1
Total dwell time, c,d min	420 (360–570)	1440 (555–1440)

Thirsty in the Morning: Choose the Best Answer

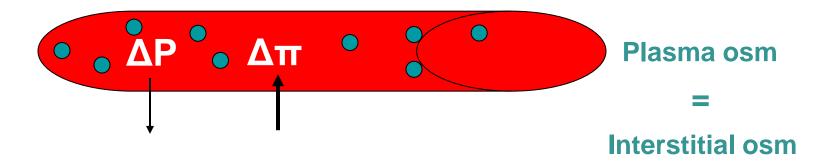
- A. The sleep apnea syndrome seen in dialysis patients leads to mouth breathing and thirst.
- B. The patient may be hypernatremic in the morning because of sodium sieving on PD.
- C. The glucose absorption increases the serum osmolality and drives thirst.
- D. The morning thirst is the result of resetting of the osmostat because of the cycling PD.

Explanation

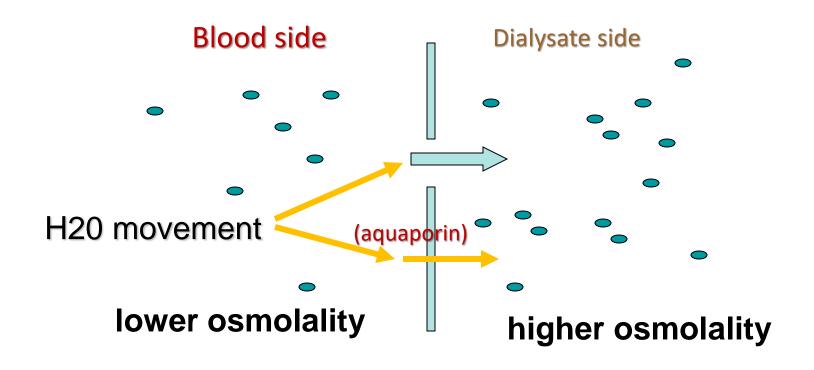

- Aquaporins allow only aqua to cross the endothelial membrane
- Rapid exchanges with hypertonic dialysis fluid will lead to more water removal compared to sodium removal
- The result will be hypernatremia, a powerful drive for thirst

The Plot Thickens: There are Different Aquaporin Genotypes (Morelle N Eng J Med 2021)

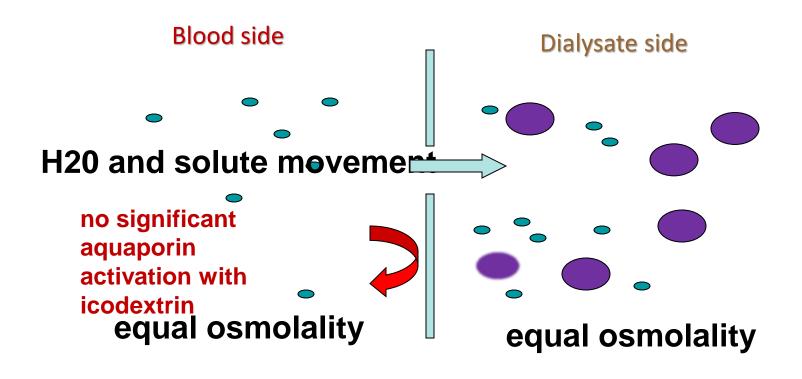
- there are genetic variants of aquaporins leading to different amounts of ultrafiltration
- Registry studies suggest that these changes may impact survival

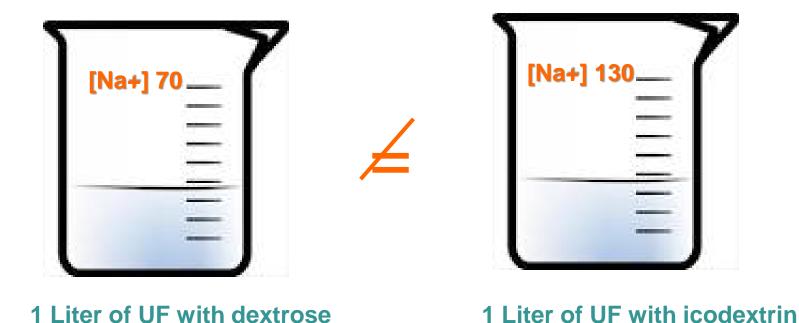

C Daily Net Ultrafiltration and Peritoneal Solute Transfer Rate According to AQP1 Genotype at rs2075574

Icodextrin – Mechanism of Action


Colloid osmosis - analogous to the Starling force of albumin causing fluid flux from the interstitial to vascular compartment

Dextrose vs Icodextrin


Crystalloid osmosis with dextrose


Dextrose vs Icodextrin

Colloid osmosis with icodextrin

No Sodium Sieving with Icodextrin: So Not all Ultrafiltrate is the Same

Marvin on APD (Part I)

- Marvin is a 35 year old man with chronic GN who starts on APD, 2.0L X 3 exchanges over 8 hours at night, last fill 2L.
- Residual kidney function is GFR 9 ml/min, U_{out} 960 ml/24h.
- Typical UF on the cycler is 800 ml, average initial drain volume of his day dwell is 1700 ml when he goes on the cycler at night.

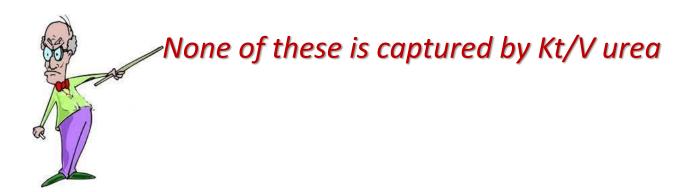
Which ONE Statement is FALSE?

- a) He is protected from ECF volume overload in part by the residual urine volume.
- b) He probably has borderline adequacy and should have his dialysis prescription increased, or be converted to hemodialysis.
- c) He should be advised to avoid nephrotoxic insults, such as NSAID's and COX-2 inhibitors.
- d) Eight hours of APD is appropriate for many patients.

Which ONE Statement is FALSE?

- a) He is protected from ECF volume overload in part by the residual urine volume.
- b) He probably has borderline adequacy and should have his dialysis prescription increased, or be converted to hemodialysis.
- c) He should be advised to avoid nephrotoxic insults, such as NSAID's and COX-2 inhibitors.
- d) Eight hours of APD is appropriate for many patients.

Explanation


- Marvin is on a reasonable PD regimen (8.0 L/day)
- in addition, he has a lot of residual kidney function
- there should be no question of adequacy issues at this point
- (he would probably even do fine with a lower dose of PD)

Adequacy of Peritoneal Dialysis

The strength of PD lies in

- continuous therapy 24/7
- preservation of residual kidney function (RKF) compared to HD
- good middle molecule clearance (by RKF and the peritoneal membrane)

Adequacy of Dialysis in PD

PERITONEAL DIALYSIS INTERNATIONAL

Guidelines

International Society for Peritoneal Dialysis practice recommendations: Prescribing high-quality goal-directed peritoneal dialysis

Peritoneal Dialysis International 2020, Vol. 40(3) 244–253 © The Author(s) 2020

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0896860819895364 journals.sagepub.com/home/ptd

High-Quality, Goal-Directed PI) **ISPD** Guidelines 2020

Shared decision-making Take into consideration life goals Minimize symptoms and the burden of therapy Preserve residual kidney function Focus also on nutrition volume status

Fluid Balance in Peritoneal Dialysis

Intake Output Na+ and water Urine and UF **Ultrafiltration**

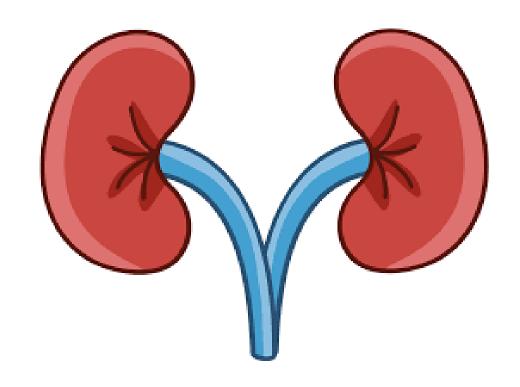
Volume Overload in PD

Intake

excessive salt and water consumption

Output

- loss of residual kidney function
- use of the wrong dialysis fluid
- failure of peritoneal membrane to respond (true ultrafiltration failure)
- mechanical problems like leaks



Volume Overload in PD

Output: Loss of Residual Kidney Function

- probably the commonest cause of progressive fluid overload
- rate of loss of RKF is variable and unpredictable from patient to patient
- use diuretics to augment urine Na⁺ & water output
 - eg furosemide, metolazone

Try to Protect the Kidney Function

- avoid NSAID's, COX 2-inhibitors, dye studies, aminoglycosides, volume depletion
- continue immunosuppression for failed transplant kidneys that still have function

Treat your dialysis patient with RKF just like you would your CKD 3 or 4 patient

Volume Overload (continued)

Use of the wrong type of PD fluid

 usually this means failure to account for the risk of fluid absorption during the long dwell

Volume Overload (continued)

Tackling the long dwell:

- 1.use icodextrin or a more hypertonic dialysate (e.g. 2.5%)
- 2. break up the long dwell
 - day dry (only if there is a lot of RKF)
 - "mid-day" exchange in APD
 - drain out day exchange in APD after a few hours

Fluid Absorption During the Long Dwell

Or, it may not need any intervention

if there is a lot of urine volume, may compensate for fluid absorption

- e.g. patient on APD
 - last fill 2L
 - initial drain 1.5 L (so .5L fluid absorption)
 - urine output 1.0 L
 - patient is clinically euvolemic

No Need to Change the Prescription

Volume Overload in PD

Output dependent

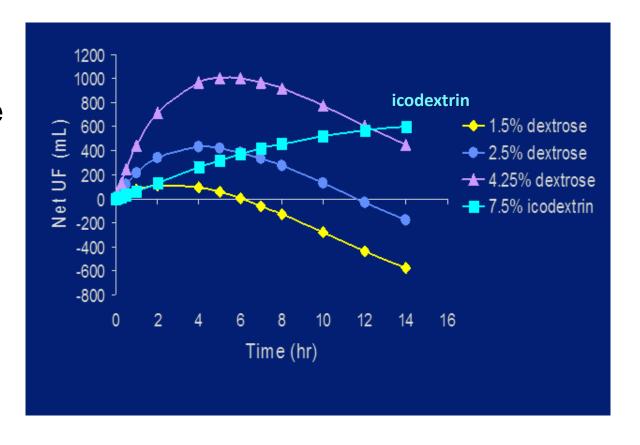
- failure of the peritoneal membrane to allow ultrafiltration (membrane failure)
- mechanical failure of dialysis procedure (leaks, etc)

True Peritoneal Membrane Failure

Definition: Inability to maintain volume homeostasis despite the use of hypertonic dialysate solutions (3 or more daily)

or

Failure to ultrafilter > 400 ml using a 4.25% bag for 4 hours (the Rule of 4's)


True Peritoneal Membrane Failure

- on PET test, D/P creatinine is high
- these rapid transporters have rapid absorption of glucose across peritoneal membrane
- rapid dissipation of osmotic gradient
- poor ultrafiltration

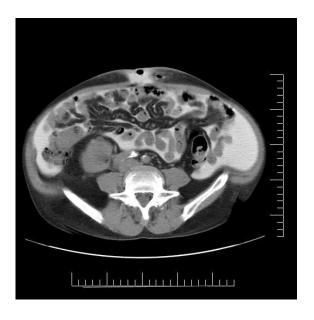
Management of Rapid Transporters (I)

- reinforce salt and water restriction
- use more hypertonic dialysate
- icodextrin can be quite helpful here (as effective in high transporters as other transport types)

Management of Rapid Transporters (II)

- "push" residual urine output (diuretics)
- APD with dry day, or drain out last fill at lunch (if enough RKF)
- once anuric, watch closely for volume overload

Consider transfer to hemodialysis if patient is chronically overloaded (start talking about vascular access placement with the patient)



Volume Overload (continued)

Output dependent

• mechanical failure of dialysis procedure

Part II – Marvin Gets Puffy

- 1 year later, Marvin comes to clinic complaining of increasing ankle edema. The BP, which had been normal, is now 150/100.
- The dialysis prescription is unchanged. Serum creatinine, which had been 10.6 mg/dl at the start of dialysis, is now 13.8 mg/dl.

Which ONE Statement fits Marvin BEST?

- a) The increased serum creatinine reflects a failure of solute transport across the peritoneum.
- b) He most likely has peritonitis and the acquisition of a high transporter state.
- c) The new onset hypertension is likely the result of acquired renal cystic disease.
- d) Both the increased serum creatinine and peripheral edema can be explained by decreased residual kidney function.

Which One Statement fits Marvin BEST?

- a) The increased serum creatinine reflects a failure of solute transport across the peritoneum.
- b) He most likely has peritonitis and the acquisition of a high transporter state.
- c) The new onset hypertension is likely the result of acquired renal cystic disease.
- d) Both the increased serum creatinine and peripheral edema can be explained by decreased residual renal function.

Explanation

- a decrease in RKF (both solute clearance and salt and water excretion)
 would explain the changes in Marvin over the past year
- an increase in serum creatinine is much more likely to be the result of a decrease in kidney creatinine clearance than to membrane changes
 - peritoneal membranes tend to become more, not less, permeable to solutes over time

Part II – Marvin Gets Puffy

How to help Marvin (APD 2.5L x3, 2L last fill)

- dietary salt restriction
- use high dose diuretics
- last fill:
 - mid-day exchange, or
 - icodextrin last fill, or
 - both (icodextrin X 10h, 2.5% X 6h)

Summary of Important Points (I)

Peritoneal Equilibration Test

- The "rapid transporter" has increased peritoneal vascularity and transports small solutes quickly; but loses the glucose osmotic gradient quickly and may have problems with ultrafiltration
- The "slow transporter" has slower removal of small solutes but better ultrafiltration

Summary of Important Points (II)

- short hypertonic PD dwells lead to removal of more water than sodium, leading to hypernatremia
 - avoid short dwells except in rapid transporters
- residual kidney function is a more important predictor of outcome than dose of PD measured by small solute kinetics
 - try to protect residual function
- don't obsess about Kt/V get at least to minimum target and obsess about
 - RKF
 - volume status
 - burden of therapy
 - and quality of life

References

1. Perl J, Dember LM, Bargman JM et al The Use of a Multidimensional Measure of Dialysis Adequacy – Moving Beyond Small Solute Kinetics Clin J Am Soc Nephrol 2017. 12(5): 839-47

2, Rodriguez-Carmona A and Perez Fontan M Sodium removal in patients undergoing CAPD Perit Dial Int 22: 705-13, 2002

3. Bargman JM

Mistakes in Dialysis: We Use Kt/V As a Measure of Adequacy of Dialysis Semin Dial 29(4): 258-9, 2016

4. ISPD Guidelines: Prescribing High Quality Goal-Directed Peritoneal Dialysis Perit Dial Int 40 (3): 244-253, 2020

5. Giles HE, Parameswaran V, Lasky R et al Trends in automated Peritoneal Dialysis Prescriptions in a Large Dialysis Organization in the United States Clin J Am Soc Nephrol 19: 723-731, 2024

Clinical Trials

Paniagua R, Amato D, Vonesh E et al
 Effect of increasing peritoneal clearance on mortality rates in peritoneal dialysis: ADEMEX, a prospective randomized controlled trial

J Am Soc Nephrol 13: 1307-20, 2002

- Churchill D et al Adequacy of Dialysis and Nutrition in Continuous Peritoneal Dialysis: Association With Clinical Outcomes
 J Am Soc Nephrol 7: 198-207 1996
- Bargman J et al Relative Contribution of Residual Renal Function and Peritoneal Clearance to Adequacy of Dialysis: A Re-Analysis of the CANUSA Study

J Am Soc Nephrol 12 (10): 2158-2162 2001

Yan H et al

Three versus 4 Daily Exchanges and Residual Kidney Function Decline in incident CAPD Patients: A Randomized, Controlled Study

Am J Kidney Dis 69 (4): 506-513, 2017

